
O.L.I.
User guide



Contents:

Topics Page no.

1. System overview
1.1. Introduction -------------------------------- 2
1.2. Server -------------------------------------- 2
1.3. Robot --------------------------------------- 2
1.4. App ----------------------------------------- 3

2. Unpacking
2.1. Robot --------------------------------------- 3

3. Installation and set up
3.1. Server -------------------------------------- 3
3.2. Simulation ---------------------------------- 4
3.3. App ----------------------------------------- 4

4. Operation of system
4.1. Running the app ----------------------------- 5
4.2. Running the O.L.I. simulation --------------- 6

5. Troubleshooting ---------------------------------- 6
6. Contact us --------------------------------------- 7

1



1. System Overview
1.1. Introduction:

The OLI platform is designed to help people at risk of falling in
their homes to live more independent and safer lives. The prototype platform
we have put together works by using a mobile app to detect and register a
fall, before autonomously navigating towards the user. OLI then steadies
itself using a deployable leg system, allowing the user to help themselves
back to a standing position. OLI’s goal is to ensure that the inconvenience
of minor falls no longer means a loss of independence whilst ensuring the
user is covered in the event of a serious fall. OLI achieves this through
the use of a timer, started upon detection of a fall, that calls emergency
services upon completion. If the fall is serious all the user needs to do is
wait and OLI will ensure that help will arrive.

1.2. Robot:
1.2.1 Navigation
O.L.I. is equipped with a 360° field of view and 3.5 meters range

LiDAR making it capable of building an accurate occupancy grid. The
implemented SLAM algorithm allows O.L.I. to start its movement from a random
position in an unknown environment and to build the occupancy grid of the
area by keeping track of its own position relative to the built map. Once
the occupancy grid is created, it can plan a path to go from one point
(start) to the other (target) using a rapidly-exploring random tree
algorithm hence avoiding all obstacles. Because it is a differential wheeled
robot (i.e a robot whose movement is based on two separately driven wheels
placed on either side of the robot body), we can easily make it rotate
toward a goal by varying the relative rate of rotation of its wheels. The
robot’s controller has been written in MATLAB and the simulations are done
in Webots.

1.2.2 CAD
The CAD model is made up of a Robotis Turtlebot Burger model, along

with a custom designed exoskeleton. The external frame is made up of a base
plate, support rods, top cap and the support bar surrounding the frame. It
also features deployable feet mounted to the base plate in order to provide
additional support to O.L.I. when aiding a user in getting up. The support
bar surrounding the frame, its joints and the deployable feet are all rated
for a load of 83.9kg. The feet and support bar are operated via linear
actuators mounted at the bottom of the robot.

2



1.3. App:
The O.L.I. robot comes with a handy mobile application that allows the

user to set up an account, call O.L.I. when required and monitors the user’s
movements to detect a fall and call for help. The app comes with a front-end
written in Dart using the Flutter framework, and a backend written in Python
using Flask.

The app comes with two buttons - Call O.L.I. and Set up.
For testing purposes, there is a third button - fall detection demo. The
first step is to set up the app to connect to OLI. If the robot and your
phone are both connected to the same WiFi network, the app will show that
OLI is connected. The user will also be given the option to enter their
name, postcode, and emergency contact number. This will personalise the
experience of the user and allow the app to call emergency services to the
right location, as well as contact your emergency contact.

1.4. Server:

The OLI prototype we have developed detects falls via a mobile app
before relaying this information onto the OLI platform itself. Wifi
communication was determined as the most reliable way for this communication
to happen since it greatly increases the range at which communication can
occur between app and robot. Whilst the simulation and the app can be run
independently of one another on a local machine, it is important to
demonstrate that we have the capability to connect the two as if we were to
deploy our prototype in the real world.

2. Unpacking:

2.1. Robot
Due to the constraints of the current pandemic, no physical prototype

of the device is available. However, we have listed what we would include
with such a device below.

Included in the box:
1x O.L.I.- robot platform
1x charging cable
1x user guide leaflet
Downloaded from the web:
1x O.L.I. app

3



3. Installation and set up:
3.1. Server

The Web Server is used to link the Webots simulation and the OLI app.
In a prototype deployed in the real world, this server would run on the OLI
platform and facilitate communication between itself and the mobile app via
a wifi network.

To install the server, please enter the following command into a terminal.
git clone https://github.com/SDP-Group-1/server.git

chmod +x OLI-server-install

sudo ./OLI-server-install

This will install and start the web server used for communication. The
web-server uses ftp and will listen on port 22. In addition to this, a new
user named ‘OLI’ is added to the system, with a home directory that will
contain all the files used for communication. An uninstall script is also
created, which will completely revert all changes made by the install
script.

3.2. Simulation
To run the robot simulation you will need to access both the MATLAB

controller and the webots worlds (simulations). The following steps will
help you set up Webots, MATLAB and the repository:
➔ Clone the git repository for the robot on your local machine using the

following command:

git clone https://github.com/SDP-Group-1/nav.git

➔ Install Webots R2021a using the installer from cyberbotics here.
➔ Install MATLAB R2021a using the installer from mathworks here.
➔ Install the necessary MATLAB toolboxes. You can do this during the

installation but you can also do this afterwards by clicking on
Add-Ons > Get Add-Ons. You will need the navigation toolbox (version
2.0), the Lidar toolbox (version 1.1), the computer vision toolbox
(version 10.0) and the image processing toolbox (version 11.3).

➔ The robot’s controller is a MATLAB controller that can be edited from
MATLAB or directly on Webots.

➔ You can now start editing the controller and the simulation as you
wish!

3.3. App
The app accompanying the O.L.I. robot uses the Flutter framework. The

following steps will help you set up the app and the editor:
➔ Install Git using the instructions here.

4

https://cyberbotics.com/
https://uk.mathworks.com/downloads/web_downloads/download_release?release=R2021a
https://flutter.dev/
https://github.com/git-guides/install-git


➔ Clone the git repository for the O.L.I. app on your local machine
using the following command:

git clone https://github.com/SDP-Group-1/oli.git

➔ Install Flutter here. This app runs on version 1.22.6 (DO NOT USE
FLUTTER 2). Once you complete installation, open your local command
line console and run flutter --version .If the version is higher
than 1.22.6, then run flutter downgrade , followed by flutter

doctor1 .
➔ The backend of the app is a server that is programmed using Python and

the Flask framework. Install Python here. Use this article to install
Flask2.

➔ The app can be maintained and edited through Android Studio or Visual
Studio Code.

◆ Android Studio: Install Android Studio here. After installation,
click on “Open Existing Android Project”, and open the oli
project folder. To add in relevant plugins for Flutter and Dart,
on an existing project, click on File > Settings > Plugins. Over
there you will be able to search for the Dart and Flutter plugins
for Android Studio.

◆ Visual Studio Code: Install Visual Studio Code here. Once
installed, open the editor, click on File > Open Folder and
navigate to the oli project folder. To better facilitate

programming in Dart, go to Extensions (Symbol- ), and install
the ‘Dart’ and ‘Flutter’ extensions.

➔ Set up a device: you can either use an emulator or your own smartphone
to run the app. It is recommended to use your own smartphone as the
fall detection requires the sensors that are present in a smartphone.

◆ Emulator: To set up and use an emulator on Android Studio, follow
this article. When an emulator is used on Android Studio, Visual
Studio Code recognises it as well. However, it is not supported
well and thus, is not recommended.

◆ Personal smartphone: On your preferred Android smartphone, enable
Developer Options using this article. Once enabled, turn on USB
Debugging. This will allow your device to show up on your
preferred editor. Additionally, install ADB here, which will
allow you to access files on your Android device and efficiently
debug the app.

That’s it! You can now start editing the app in your preferred editor.

2 You do not need to set up an environment to use Flask - that is optional, but recommended. You can also
install Flask through pip, the Python package manager directly on your machine.

1 This will ensure that the other SDKs involved such as Dart will be updated corresponding to the version of
Flutter

5

https://flutter.dev/docs/get-started/install
https://www.python.org/downloads/
https://flask.palletsprojects.com/en/1.1.x/installation/
https://developer.android.com/studio
https://code.visualstudio.com/download
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/debug/dev-options
https://developer.android.com/studio/command-line/adb
https://pypi.org/project/Flask/
https://pip.pypa.io/en/stable/installing/


4. Operation of system
4.1. Running the app

The app consists of two parts - a frontend in Dart (Flutter) and a
backend in Python (Flask). The Flask server needs to be run prior to running
the app. Follow these steps to get the app running on your machine3:
➔ Open your preferred text editor that you set up in Section 3.3., and

open the project in the editor.
➔ Open /fall-detection/flask_backend.py in your editor, and edit line 7

to your local IP address (format: http://<your IP>:5000). Use this
article to find your IP address.

➔ Open your local command line console and navigate to the oli app
directory. When inside the directory, open /fall-detection.

➔ Run the flask_backend.py file to start the backend server.
python flask_backend.py (may need to use python3).

➔ To run the app on Android Studio, click on the Play icon in the
toolbar, or click on Run > Run. To run the app with breakpoints,
follow this article.

➔ To run the app on Visual Studio Code, open /lib folder. This folder
contains all the Dart files that build and render the app. Open
main.dart, and above the main function, there should be two options:
Run | Debug. Click on Run and the Command Palette will open all the
devices connected. Click on your Android Device.

➔ The app will take around 1-2 minutes to build and will then open on
your device. Make sure your Android smartphone is unlocked.

The app should now be running on your machine. You can use the debug console
present in your editor to see any print() messages to confirm that the app
is running correctly.

4.2. Running the O.L.I. simulation
The GitHub repository currently contains 5 branches including main. The main
branch contains the latest working version. The other 4 branches contain the
features in development.
➔ If you wish to work on any of these features you can

git fetch origin <branch-name>

git checkout <branch-name>

➔ Once you are on the desired branch you will be shown two folders:
demos and webots. Select webots.

➔ The webots folder itself contains multiple other folders each
showcasing a feature such as lidar-readings, route-planning or
occupancy-grid creation.

➔ Based on what you wish to see/ work on, select a folder.

3 These steps are for running the app on your own personal device.

6

https://www.tp-link.com/us/support/faq/838/
https://www.tp-link.com/us/support/faq/838/
https://flutter.dev/docs/development/tools/android-studio#run-app-with-breakpoints


➔ The directory that you have chosen should now show 2 subdirectories:
The Worlds folder and the Controllers folder. The worlds folder
contains the webots simulations whereas the controllers folder
contains the MATLAB controllers.

➔ Simply choose the simulation you wish to run and open it on Webots.
The associated controller will be automatically displayed next to it.

➔ If you wish, you can choose to edit the controller in MATLAB.
➔ Note that, once you run the simulation a MATLAB Command window will

appear.

5. Troubleshooting

Q - Null safety error while running ‘pub-get’ on Flutter.
A - Flutter has recently introduced a new version 2.0 which introduces a
number of new programming safeties. However since we are building our app on
an older version of Flutter, it can not support all dependencies that have
been updated to support Flutter 2.0. It is then up to the developer to go
through which dependencies have been updated for Flutter 2.0, set their
versions to the appropriate ones, and run flutter downgrade, followed by
flutter doctor.

Q - Flask server does not receive the request from the app with the sensor
data / SocketException in fall detection.
A - Ensure that the host IP is set to your laptop’s IP address in
/lib/flaskApi.dart (line 7). To find your laptop’s IP address, follow this
article.

Q - Invalid depfile message in the debug console for the app.
A - Run flutter clean in your project directory from the command line to
resolve the issue.

Q - The server is giving me a 500 OOPS error when I try to connect?
A - This issue is likely the result of a server misconfiguration or a faulty
connection. To fix, uninstall and reinstall the server using the steps on
pages 3 and 4. If this fails, try using the ‘kill’ command on other programs
that might be trying to use the same port as the OLI web server

Q - Webots is not linking to MATLAB
A - 64-bit versions of Webots are not compatible with 32-bit versions of
MATLAB. Webots comes only in 64-bit flavors and therefore it can only
inter-operate with a 64 bit version of MATLAB.

7

https://www.tp-link.com/ae/support/faq/838/


Q - Webots is showing this error message on the console: “error using ⇒
calllib Method was not found” or “error in ⇒ launcher at 66
calllib(‘libController’, ‘wb_robot_init’)
A - On some platforms the MATLAB interface needs perl and gcc to be
installed separately. On some macOS systems the MATLAB interface will work
only if you install the Xcode development environment

Q - Webots is using the wrong controller
A - When Webots tries to start a controller it must first determine what
programming language is used by this controller. So, Webots looks in the
project's controllers directory for a subdirectory that matches the name of
the controller. The first file that is found will be executed by Webots
using the required language interpreter. It won't be possible to execute
"xyz_controller.m" if a file named "xyz_controller.py" is also present in
the same controller directory.

Q - Webots is using a void controller instead of my controller
A - In the case the filename specified in the .wbt file doesn’t exist or if
the required language interpreter is not found, an error message will be
issued and Webots will start the "void" controller instead.Make sure that
you have done all the steps mentioned in 3.2 of the user guide and that the
controller file is in the right subdirectory.

6. Contact us

For any queries, please contact us on group1@ed.ac.uk.
To give us feedback on how we can improve our product, please send an email
to feedback-group1@ed.ac.uk.
If you believe you can contribute to our project, open a pull request in the
respective repository on GitHub and request a review from a member of that
team. Read this article to learn how to contribute to open-source projects.

8

mailto:group1@ed.ac.uk
mailto:feedback-group1@ed.ac.uk
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request
https://opensource.guide/how-to-contribute/

